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RANDOM FORESTS: AN OVERVIEW
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1. AMOMENTTO STATE THE OBVIOUS...

identifying the taxonomic and geographic source of wood is challenging

* Trees are genetically complex

* Trees are long lived, and have
overlapping generations

* Trees share genetic information over
long temporal and geographic spans

* Genetic complexity influences
metabolic and anatomic traits, and
these influence taxonomic complexity

Photo: Rachéi



ADDRESSING THE CHALLENGE
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DATA INTEGRATION (?)

multiple methods = yes integration = ?

Machine vision; classification trees;
phylogenetic trees

phylogenetic trees; spatial-genetic

H Classification trees; ‘barcode’
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2. RANDOM FORESTS

a.k.a., “the best ‘black box’ method ever invented...”

A versatile ensemble method - combines many models into one
* (Can be used for simple or complex classification problems
* Handles large data sets, missing data, nearly any kind of data

* Directly identify features important in classification prediction



ONE CLASSIFICATION TREE
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MANY RANDOM TREES = A 'FOREST
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S en (‘bagged’) to create classification trees

-pag) validate classification trees to estimate error

* C(Classification model determined by ‘voting’ from all trees in the forest

* BONUS! Classification variables are ranked by ‘importance’ to the model



3. INTEGRATING DATA: DOUGLAS-FIR

what species can we choose?

e Easyto obtain

e Large geographic, climatic range,
with continuous and patchy
distributions
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INTEGRATING DATA: PILOT STUDY

- Willamarttra /-
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www.splitboardoregon.com

PNW REGION D-FIR Q: can we identify tree source as coast v. cascade?

* Genetics * Anatomy
* Metabolomics * |sotopes




INTEGRATING DATA: GENETICS
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PNW GENETICS STUDY

384 individuals; 141 in Oregon
51 coast 90 cascade

, * Needle DNA assayed for nuclear
genetic variation at 25,000 genes

* 16,467 usable Single Nucleotide
Polymorphisms (SNPs)

* SNPs ranked by spatial signal;
500 ‘top Fst’ SNPs selected

* Random Forest classification
performed using 500 SNPs




INTEGRATING DATA: METABOLOMICS

Latitude

* Cores extracted from trees, dried

48 1

* Heartwood (yrs 27-29) profiled by
DART-MS

46 1

* [on presence, abundance estimated
by Mass Mountaineer™ ; 946 ions

444

* Mean profiles estimated (n=3)

424
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METABOL(;;\Q;ITC STUDY * Random Forest classification
188 individuals; Oregon performed using 946 ions
86 coast 102 cascade



RESULTS: RF CLASSIFICATION

ok * Sanity check: randomized
DObserved Data e
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RF CLASSIFICATION ACCURACY

MODEL INPUTS ACCURACY
GENETICS MODEL 500 SNPs 83.4%
METABOLITE MODEL Metabolites: 946 ions 15.7%

FULL MODEL Genet+Metab: 500 SNPs + 946 ions 83.6 %



GENETIC & METABOLOMIC ‘IMPORTANCE’

SNPs+METAB What can we learn from integrated analysis?

* Integration DOESN'T measurably improve
iss classification accuracy (in this case)

.chemi_stryr
* Integration DOES reveal contribution of genetics,
metabolomics to the classification model
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* Integration allows us to examine classifier
‘importance’ - what drives the classification?
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GENETIC & METABOLOMIC ‘IMPORTANCE’

SNPs+METAB+ANAT+ISO What can we learn from integrated analysis?

Anatomy.16
Isotope.2101
Anatomy.89
Isotope.2014
Anatomy.32
Isotope.2119
Anatomy.55
Isotope.2140
Genetics.917
Anatomy.9
Anatomy.10
Chemistry.1101
Chemistry.1107
Isotope.2134
Chemistry.1599
Genetics.640
Genetics. 771
Anatomy.32
Genetics.118
Chemistry.1121
Chemistry.1167
Genetics.614
Genetics.503
Genetics.898
ete...

* Integration doesn’t measurably improve
classification accuracy (in this case)

* Integration reveals contribution of genetics,
metabolomics to the classification model

* Integration allows us to examine classifier
‘importance’ - what drives the classification?

* [magine ifyou had a rich data set....
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GENETICS + METABOLOMICS +

MODEL INPUTS VARIABLES »
GENETIC MODEL '
METABOLITE MODEL

ANATOMY MODEL e —————— b b

ISOTOPE MODEL

FULL MODEL

PNW GENETIC STUDY

340 families (locations)



4. CONCLUDING REMARKS

* Integrated classification models from .»
multiple data sources possible with
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* Develops robust classification models



CONCLUDING REMARKS

* “Field of Dreams” hypothesis: Build it...
* Temperate zone trees can help simulate...

* Spatial classification

* Taxonomic classification (e.g., White Oaks, Pines)

* Spatial + Taxonomic classification

https://en.wikipedia.org/wiki/Oak#/media/File:Quercus_robur.jpg
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